

Mary Shaw

School of Computer Science
Carnegie Mellon University

mary.shaw@cs.cmu.edu
November 2006

“Robustness” is an overarching property of software systems that includes, to various viewers and
to various extents, elements of correctness, reliability, fault-tolerance, performance, security,
usability (without surprises), accuracy, and numerous other properties. Robustness is a form of
dependability that focuses on resilience to failures.
Many aspects of dependability and robustness have been explored extensively in the context of
individual components. Modern software systems, however, are composed from multiple
components. Often these components have not been designed to operate together. Increasingly
these components are legacy code or even applications that can operate alone as well as in
concert. Further, the components may be data or services as well as code. The challenge of
individual components lies in understanding and managing the code, but the major challenge of
modern systems lies in understanding and managing the interactions among the components.
Large-scale system integration encounters new sources of problems, such as architectural
mismatch, cross-platform portability, and side effects of evolution of the computing
infrastructure.
This new setting qualitatively changes the nature of the software development and integration
process.
 Classical software Modern systems
 Localized Distributed
 Independent Interdependent
 Insular Vulnerable
 Installations Communities
 Centrally-administered User-managed
 Software Information resource
 Systems Coalitions
In this setting, “coalition” seems like a more suitable label than “system” for the interacting
collection of information technology components.
A number of strategies offer complementary approaches for achieving robustness in this setting,
as suggested by Figure 1.
There are two general ways to deal with the possibility of bad things happening: Prevent them
from happening at all and detect problems and react to them as they occur. We approach the
former through validation and the latter through remediation. Within each of these categories we
can identify (at least) three interesting cases.

RTO-MP-IST-064 2.5 - 1

2.5 – Strategies for Achieving Robustness in Coalitions of Systems

MAILTO:mary.shaw@cs.cmu.edu

Figure 1: Approaches to robustness in modern software coalitions

Prevention

Prevention based on a global standard
This case is the focus of much of formal language theory and static program analysis, which
attempt to make guarantees about programs based on the code of a system. In recent years this
has focused on specific properties rather than complete specifications. The objective here is
absolute guarantees.
This is also the focus of dynamic analysis including testing and dynamic analyses (e.g., of
runtime behavior).

Prevention based on a relative standard
It is increasingly clear that the acceptability of a system to a specific user – and hence the
robustness of the system in the eyes of that user – depends as much on the expectations of the
user as it does on compliance with system specifications. Two issues arise.
First, the expectations of a given user may be either less demanding or more demanding than the
system specification promises (or would promise if it existed). The first case is clear: the user
might not use all of the precision, capability. or performance of the system or might be more
tolerant of failures. The second case also arises, though: users often imagine what they hope the
system may do and are unhappily surprised when it does not meet their expectations.
The second issue is a question of engineering cost-effectiveness: the cost of increasing robustness
may not be justified by a user’s actual needs. Rather, we need a way for individual users to
determine whether a system is sufficiently dependable for their own needs.

Prevention based on a policy standard
We are beginning to come to grips with systems that are very large as measured by observable
metrics such as lines of code, numbers of users, amount of data, and dependencies among
components. But we continue to reason about them as if they were discrete systems subject to
central control.
A more complex form of system is now emerging, with the Internet as a principal example. These
systems are not simply larger versions of the systems we are familiar with. They feature

Potential problem (bad thing)

Prevention Reaction

Remediation

Technical
reactive

Economic

Fault-
tolerant

Compen-
satory

Validation

Global
std

Policy
std

Traditional Ultra-large
scale

User-
centered

Self
healing

Relative std Technical
adaptive

2.5 – Strategies for Achieving Robustness in Coalitions of Systems

2.5 - 2 RTO-MP-IST-064

• Decentralized operation and control
• Conflicting, unknowable, diverse requirements
• Continuous evolution and deployment
• Heterogeneous, inconsistent, changing elements
• Indistinct people/system boundary
• Normal failures triggered by complex system coupling

These features preclude central design. These systems grow organically as a result of the actions
of independent, possibly competitive users. They require new forms of acquisition and policy that
are more akin to zoning laws – ways to govern independent evolution – than to conventional
system specifications. [Software Engineering Institute. Ultra Large-Scale Systems: The Software
Challenge of the Future. 2006 http://www.sei.cmu.edu/uls/]

Reaction

Reaction based on traditional reactive techniques
This case is the focus of classical fault tolerance, with roots in classical hardware fault tolerance
with explicit set points or specifications of error states. In this case, robustness thresholds are set
explicitly and crossing a threshold triggers remedial action. The strategy is to characterize the
states of the system and the transitions between those states.

Reaction based on adaptive techniques
A difficulty with traditional reactive techniques is that they must invest specification effort in
precisely defining the internal states or thresholds. Sometimes the robustness property of interest
is appropriately treated as a threshold, but more often a system degrades gradually from
dependable to undependable operation. Choosing an exact threshold requires making a choice of
a single point in this gray area of decline.
An alternative is to base reaction on adaptive techniques that respond with low intensity to mild
decline and with increasing intensity as the situation deteriorates, but that do so as a general
reaction to conditions rather than as an explicit state change. Biological homeostasis offers
tantalizing examples.
Robustness can also be improved by budgeting computing capability for reflection: maintaining a
model of expected system behavior, monitoring system performance, and triggering adaptation.
In effect, this replaces classical fixed setpoints with a more sophisticated basis for adaptation.

Reaction based on economic mechanisms
Sometimes systems fail and dynamic recovery is not possible. The world at large recognizes this
as a risk management problem. One common way to manage such risks is to convert low
probability, high impact events into high probability, low impact events. Insurance is a common
example: risks of low probability, high cost events are pooled over a population that shares
similar risks. Each member of the pool contributes a “premium” – a know payment that creates a
fund that is subsequently disbursed to the few members of the pool who actually encounter the
event.
Insurance-based risk management is common in software-intensive businesses, but it has received
little attention at the system level. Creating an insurance model for software-intensive systems
would require the ability to predict failure rates for the insured system, a way to attribute system

2.5 – Strategies for Achieving Robustness in Coalitions of Systems

RTO-MP-IST-064 2.5 - 3

http://www.sei.cmu.edu/uls/

failures to specific components, a way to evaluate the cost of a failure, and a way to create the
risk-sharing pool.
Explicit risk management also offers an opportunity to make triage decisions – to assess system
degradation and drop nonessential functions. This approach is used in provisioning certain types
of service bureaus: an economic decision may provide to maintain less capacity than potential
peak load, planning to drop (and pay penalties) some clients when load peaks in order to provide
capacity for higher-priority clients.

2.5 – Strategies for Achieving Robustness in Coalitions of Systems

2.5 - 4 RTO-MP-IST-064

	2.5 – Strategies for Achieving Robustness in Coalitions of Systems
	Prevention
	Prevention based on a global standard
	Prevention based on a relative standard
	Prevention based on a policy standard

	Reaction
	Reaction based on traditional reactive techniques
	Reaction based on adaptive techniques
	Reaction based on economic mechanisms

